Food without agriculture | Resilience of nature

  • Foley, JA et al. Global Implications of Land Use. Science 309570–574 (2005).

    Article CAS Google Scholar

  • Newbold, T. et al. Global effects of land use on native terrestrial biodiversity. Nature 52045–50 (2015).

    Article CAS Google Scholar

  • Hong, C. et al. Global and regional drivers of land-use emissions 1961–2017. Nature 589554–561 (2021).

    Article CAS Google Scholar

  • Qin, Y. et al. Flexibility and Intensity of Global Water Use. National Maintain. 2515–523 (2019).

    Google Scholar Article

  • Evans, AE, Mateo-Sagasta, J., Qadir, M., Boelee, E. & Ippolito, A. Agricultural water pollution: key knowledge gaps and research needs. Curr. opinion Environ. Maintain. 3620–27 (2019).

    Google Scholar Article

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic greenhouse gas emissions. National Food 2198–209 (2021).

    Article CAS Google Scholar

  • Tillman, D. and Clark, M. Global diets link environmental sustainability and human health. Nature 515518–522 (2014).

    Article CAS Google Scholar

  • Garnett, T. et al. Sustainable intensification in agriculture: prerequisites and policies. Science 34133–34 (2013).

    Article CAS Google Scholar

  • Cassidy, ES, West, PC, Gerber, JS & Foley, JA Redefining agricultural yields: from tonnes to fed people per hectare. Environ. Res. Lett. 8034015 (2013).

    Google Scholar Article

  • Barrera, EL & Hertel, T. Global food waste across the income spectrum: implications for food prices, production and resource use. Food policy 98101874 (2021).

    Google Scholar Article

  • Stranges, AN A History of the Fischer-Tropsch Synthesis in Germany 1926–45. Stud. Surf. Sci. catalog 1631–27 (2007).

    Article CAS Google Scholar

  • Imhausen, A. Fatty acid synthesis and its importance for securing the German fat supply. Colloid-Z. 103105–108 (1943).

    Article CAS Google Scholar

  • Drauz, K. et al. Amino acids. Ullman’s Encyclopedia. Ind. Chem. https://doi.org/10.1002/14356007.a02_057.pub2 (2007).

    Google Scholar Article

  • McPherson, AT Chemical and Biochemical Food Production for Man and Animals. J. Anim. Sci. 25575–581 (1966).

    Article CAS Google Scholar

  • McPherson, AT Synthetic food. Nature 242144–145 (1973).

    Google Scholar Article

  • Annual Energy Outlook (EIA, 2021).

  • Shah, J., Arslan, E., Cirucci, J., O’Brien, J. & Moss, D. Comparison of oleo- versus petroleum sources of fatty alcohols by cradle-to-neck life cycle assessment. J. Surfactants Deterg. 191333–1351 (2016).

    Article CAS Google Scholar

  • Leger, D. et al. Photovoltaic-powered microbial protein production can use land and sunlight more efficiently than conventional crops. Proc. Natl Acad. I know the USA 118e2015025118 (2021).

    Article CAS Google Scholar

  • Soland, NE, Roh, I., Huynh, W.-S. & Yang, P. Synthesis of Carbohydrates from Methanol Using Electrochemical Partial Oxidation on Palladium with an Integrated Formose Reaction. ACS Sustain. Chem. Eng. 1112478–12483 (2023).

    Article CAS Google Scholar

  • Cai, T. et al. Cell-free chemoenzymatic synthesis of starch from carbon dioxide. Science 3731523–1527 (2021).

    Article CAS Google Scholar

  • Hann, EC et al. A hybrid inorganic-biological artificial photosynthesis system for energy-efficient food production. National Food 3461–471 (2022).

    Article CAS Google Scholar

  • Tawfiq, NI, Khalil, MAA-G. & Abu-Zeid, AA-Z. Use of petroleum fractions for single cell protein production. Central view bacteriol. Natural Science 136433–448 (1981).

    CAS Google Scholar

  • Petersen, LAH Production of single cell proteins in U-shaped bioreactors: fundamentals, modeling and control. Ph.D. thesis, Technical Univ. Denmark (2019).

  • Groenewald, M. et al. Yarrowia lipolytica: safety evaluation of an oleaginous yeast with great industrial potential. Crete. Rev. Microbiol. 40187–206 (2013).

    Google Scholar Article

  • Callista Food and energy security through sustainable life sciences http://www.ascension-publishing.com/ABLC-NEXT-2014/Calysta-Shaw.pdf (2014).

  • Martinez, JBG, Alvarado, KA & Denkenberger, DC Synthetic petroleum fat as a sustainable food for global disasters: preliminary techno-economic assessment and technology roadmap. Chem. Eng Res. From. 177255–272 (2022).

    Google Scholar Article

  • Tan, Y.-A. By-products of palm oil extraction and refining. OCL 139–11 (2006).

    Article CAS Google Scholar

  • Oilseeds: world markets and trade (USDA Foreign Agricultural Service, 2023).

  • Eshel, G., Stainier, P., Shepon, A. & Swaminathan, A. Environmentally optimal, healthy, protein and energy-saving plant-based alternatives to American meat. Sci. Representative 9103345 (2019).

    Google Science

  • Humbird, D. Economies of scale for cultured meat. Biotechnology. Bioeng. 1183239–3250 (2021).

    Article CAS Google Scholar

  • Bajželj, B., Laguzzi, F. & Röös, E. The role of fat in the transition to sustainable diets. Planet Lancet. Hello 5644–653 (2021).

    Google Scholar Article

  • Román, S., Sánchez-Siles, LM & Siegrist, M. The importance of food naturalness to consumers: results of a systematic review. Trends Food Sci. technical 6744–57 (2017).

    Google Scholar Article

  • Almroth, BMC et al. Quantification of release of synthetic fibers from textiles; source of microplastics released into the environment. Environ. Sci. pollution. Res. 251191–1199 (2018).

    Google Scholar Article

  • Roser, M. Employment in agriculture https://ourworldindata.org/employment-in-agriculture (2013).

  • World Bank: World Development Indicators (World Bank, 2022); https://databank.worldbank.org/data/reports.aspx?dsid=2&series=NV.AGR.EMPL.KD

  • Chen, C., Restuccia, D. & Santaeulàlia-Llopis, RL Land maldistribution and productivity. Am. icon J. Macroecon. 15441–465 (2023).

    Google Scholar Article

  • Michaels, G., Rauch, F. & Redding, S. Urbanization and structural transformation. QJ Icon 127535–586 (2012).

    Google Scholar Article

  • Pollin, R. & Callaci, B. The Economics of Just Transition: A Framework for Supporting Fossil Fuel Dependent Workers and Communities in the United States. Labor Stud. J. 4493–138 (2019).

    Google Scholar Article

  • Carley, S. and Koniski, D. M. The fairness and justice of the clean energy transition. National Energy 5569–577 (2020).

    Article CAS Google Scholar

  • Tzachor, A., Richards, CE & Holt, L. Future foods for risk-resilient diets. National Food 2326–329 (2021).

    Google Scholar Article

  • Socolow, R. et al. Direct capture of CO from air2 With Chemicals: A Technology Assessment for the APS Public Affairs Group (American Physical Society, 2011).

  • Keith, DW, Holmes, G., Angelo, DS & Heidel, K. A CO capture process2 from the atmosphere. Joule 21573–1594 (2018).

    Article CAS Google Scholar

  • McQueen, N. et al. Direct air capture (DAC) overview: expanding commercial technology and innovation for the future. Program Energy 3032001 (2021).

    Google Scholar Article

  • Smil, V. Enriching the Earth: Fritz Haber, Karl Bosch and the Transformation of Global Food Production (MIT Press, 2004).

  • Foley, JA et al. Solutions for a cultivated planet. Nature 478337–342 (2012).

    Google Scholar Article

  • Liu, J., Ma, K., Ciais, P. & Polasky, S. Reducing human nitrogen use for food production. Sci. Representative 630104 (2016).

    Article CAS Google Scholar

  • Dinerstein, E. et al. A ‘Global Safety Net’ to Reverse Biodiversity Loss and Stabilize Earth’s Climate. Sci. Adv. 6eabb2824 (2020).

    Google Scholar Article

  • Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Maintain. Energy Rev. 28555–565 (2013).

    Article CAS Google Scholar

  • House, KZ et al. Economic and energy analysis of CO capture2 from the surrounding air. Proc. Natl Acad. I know the USA 10820428–20433 (2011).

    Article CAS Google Scholar

  • Yan, Z., Hitt, JL, Turner, JA & Mallouk, TE Storage of renewable electricity by electrolysis. Proc. Natl Acad. I know the USA 11712558–12563 (2020).

    Article CAS Google Scholar

  • Friedlingstein, P. et al. Carbon Budget 2022 Earth System Sci. Data 144811–4900 (2022).

    Google Scholar Article

  • FAOStat (FAO, 2023).

  • Leave a Comment

    Your email address will not be published. Required fields are marked *